
CS3485
Deep Learning for Computer Vision

Lec 13: Intro to Object Detection

(Tentative) Lecture Roadmap

Basics of Deep Learning

Deep Learning and Computer Vision in Practice

Intro to Object
Detection

Fast Object
Detection

Intro to Image
Segmentation

Autoencoders Advanced GANs

Applications of Detection
and Segmentation

Image Generation
with GANs

The Attention
Mechanism

Transformers
and ChatGPT

Intro to
Computer Vision

Linear Classifiers and
Perceptron

Multilayer Perceptron Pytorch I – MLPs Convolutional Neural
Networks

Optimization
in Deep Learning

Pytorch II – Images and
Regularization

Data Augmentation
and Deep CNNs

Inception Net and
what CNNs learn

Transfer Learning and
Residual Nets

Adversarial Examples
and Self-supervision

Intro to
MLOps

Image Generation
by Prompt

Misc.
Topics

When Image Classification isn’t enough

■ In the previous lectures, we learned about how to perform image classification.
■ Now, imagine a self-driving car: for it, checking if the road it sees contains the images of

vehicles, a sidewalk, and pedestrians isn’t enough.
■ It is also important to identify where those objects are located!
■ The various techniques for object detection we’ll study today and next time come in

handy in such a scenario.

Object Localization

■ To understand object detection we first need to see
another vision task called Object Localization:

Object Localization is the task of locating an instance of a
particular object category in an image, typically by

specifying a bounding box centered on the instance.

■ The object’s bounding box (BB) is a rectangle that tightly
surrounds the object found and is the our desired output.

■ BBs are specified by a tuple of four numbers:

(Cx, Cy, H, W)

where Cx and Cy are the BB (normalized*) centers and H
and W are its height and width, also normalized.

Bounding box
* Normalized in relation to the dimensions of the original image, so all these values are in [0, 1].

Object Detection

■ Object detection is then the joint work of image classification and object localization:

Object detection is the task of localizing instances of objects of a certain set of available
classes within an image.

Object Classification Object Localization Object Detection

‘cat’ ‘cat’, ‘dog’, ‘dog’, ‘cat’ + locations(.4, .5, .5, .8)

Object Detection in Practice

■ Here are some examples of object detection outputs:

On Individual Images On Videos

Applications of Object Detection

■ Some of the various use cases leveraging object detection include the following:
● Surveillance: This can be useful for recognizing intruders in places, count people in crowds,

detecting hazardous situations, etc.
● Autonomous cars: This can be helpful in recognizing the various objects present on the image

of a road.
● Image search: This can help identify the images containing an object of interest.
● Automotives IDing: This can help in identifying a number plate within the image of a car.

http://www.youtube.com/watch?v=FdiQ_EGbZe0

Data involved in Object Detection

■ As with image classification, we are doing supervised learning, so we also need training
data in Deep Learning based Object Detection.

■ This data is usually composed of at least a set of images with ids and a table that
contains each class and bounding boxes vectors* (humanly annotated) about each image.

Image id Cx Cy W H Class

3212 0.3528 0.2741 0.3123 0.5859 bus

3212 0.6734 0.7932 0.0521 0.5270 person

3212 0.7589 0.7356 0.3257 0.4275 car

3212 0.7042 0.5278 0.0349 0.1290 person

3212 0.9531 0.6545 0.0790 0.5352 person

Example image (id: 3212) Example bounding box table

* Sometimes, the box info will come as the rectangles’ (xmin, xmax) and (ymin, ymax) , instead of our (Cx, Cy, H, W) used
here.

Object Proposals

■ After the network is trained (more on it later), we’ll need to generate object proposals
from a test image, from which objects’ classes are to be inferred.

■ To understand object proposals, imagine that the image of interest is grayscale and it
contains a woman and a TV in the foreground and a wall in the background. Assume:
● The colors in the background are usually lighter and don’t change abruptly.
● The colors in the foreground are darker and change very rapidly.
● The pixels in each object are compact, i.e., each object is a sole blob of pixels instead of

multiple separated blobs.

■ It means that we can detect potential objects just from their pixel colors and locations.
■ Object proposals (also called region proposals), therefore, are regions of the image

where the pixels are similar color-wise and close to one another.
■ From each proposal we can draw a box (also called a region of interest, RoI), potentially

containing an object in the image.

Object Proposals

■ Unfortunately, the notions of similar and close are quite subjective subjective:
● If we make them permissive (any similarity and closeness is enough to joining pixels together),

we may end up with too many proposals, most of which are useless.
● If we make them to strict, we may miss big objects (like the TV below) that are composed of

smaller regions of different colors.

Original Image Proposals generated after some iterations ■ The usual approach to
solve this issue to start
with a very permissive
set of proposals, then
join them into larger
regions and repeat
until a minimum amount
of regions is found.

Selective Search

■ The process described before is called selective search and there is a library in Python
conveniently called selectivesearch that implements this technique:

where scale corresponds to the permissiveness discussed before, min_size is the
min. region size of each proposal in pixels and regions is a list with the BBs’ info.

■ In order to show an image with the bounding boxes of the proposals, we can use the
function show from the torch_snippets library:

where bbs is a list of tuples in the format (xmin, xmax, ymin, ymax) and texts is
a list of strings that contain the label of each bounding box.

import selectivesearch
_, regions = selectivesearch.selective_search(img, scale=1.0, min_size=50)

import torch_snippets
torch_snippets.show(img, bbs=list_of_bounding_boxes, texts=list_of_bb_classes)

https://pypi.org/project/selective-search/

■ Some selective search results from different values of scale and min_size (MS):

■ The goal is to hit a sweet spot by having enough proposals, not too many, not too few.

Selective Search

Original Image Low scale and MS High scale and low MS High scale and MS

Exercise (in pairs)

■ The previous cat image’s bounding boxes were generated using the following code:

Now, download a new image from the internet of anything, generate its bounding boxes
via selective search and show them torch_snippets.show(). Note that regions do
not give a list of tuples corresponding the the BBs dimensions right away, it is infact a list
of dictionaries. Explore what these dictionaries contain before you plot the BBs.

!pip install selectivesearch torch_snippets # Don’t forget to install them on Colab

import torchvision.io as io
import selectivesearch
import torch_snippets

img = io.read_image("cat.jpg").permute(1, 2, 0)
_, regions = selectivesearch.selective_search(img, scale=200, min_size=1000)

Click here to open code in Colab

https://colab.research.google.com/drive/1gybNYpoVaYXj4TRAA0ao0JT07FYtP7-y?usp=sharing
https://colab.research.google.com/drive/1gybNYpoVaYXj4TRAA0ao0JT07FYtP7-y?usp=sharing

■ One way to perform detection is to classify each proposal using a pre-trained net (like
VGG16) fine-tuned to the desired classes (here we’d also add a class for background).

■ Then, our output would the each predicted class and each proposal location, along with
the classification confidence that that region belongs the predicted class.

Naive Object Detection

VGG16
Backbone

Dense
Layers

Original
Image

Get Region
Proposals

Warp Each
Region

Get CNN
Features

Classify
Regions

‘cat’

(0.6,0.4,0.2,0.7)

Class and
Bounding

Box

Improving Detection

■ This method is, however, inefficient for real data.
■ That is mainly due to the proposals not matching the

objects they are looking for very well, producing an offset
that makes detection imprecise.

■ This offset is a vector of 4 dimensions of off the
proposal’s location is compared to the ground-truth’s.

■ In 2013, a team of researchers from UC Berkeley solved
this problem by proposing the Region-based
Convolutional Neural Network (R-CNN).

■ In R-CNN, the network not only predicts the class of each
proposal, but also predicts the offset of that proposal with
respect to the object on the image.

PredictionGround Truth

https://arxiv.org/pdf/1311.2524v5.pdf

■ The pipeline for R-CNN is similar to our previous approach, with the difference now that
we training two MLPs (a sequence of dense layers) after the CNN block:
● The first takes care of classification, like before.
● The second performs regression on the offsets, i.e., how much we should shift a bounding

boxe to align them better to the object.

Object detection with R-CNN

VGG16
Backbone

Dense

Original
Image

Get Region
Proposals

Warp Each
Region

Get CNN
Features

Classify and
Correct
Regions

Class and
Bounding

Box

(0.6,0.4,0.2,0.7)

‘cat’

(-0.05,0.01,0,0.02) (0.55,0.41,0.2,0.72)+ =

Dense

■ In R-CNN, we are doing:
● Classification for getting object classes.
● Regression to find the bounding

box offsets.

■ In regression, as opposed to
classification, the goal is to predict a
continuous value, instead of a class.

■ We implement a regressor (as opposed
to a classifier) in an (dense) MLP by simply removing its softmax before the final output.

■ The typical loss regression, the typical loss is Mean Squared Error Loss (MSE), given by:

where {ŷ1, ŷ1, …, ŷn} are the predictions and {y1, y1, …, yn} are the expected result.

Regression and MSE Loss

, where

…

ŷ1

ŷ2

ŷ

K

∑

∑

∑
… … …

…

…

…

…

An MLP for Regression

x1

x2

xD

…

Measuring Performance

■ Imagine a scenario where we came up with a prediction with R-CNN of a bounding box
for an object. How do we measure the accuracy of our prediction?

■ The concept of Intersection over Union (IoU) comes in handy in such a scenario:
● Intersection measures how overlapping the predicted and actual bounding boxes are,
● Union measures the overall space possible for overlap.

■ IoU is the ratio of the overlapping region between the two bounding boxes over the
combined region of both the bounding boxes and its value is always between 0 and 1.

Intersection Union Intersection over Union

Measuring Performance

■ The larger the IoU, the greater the overlap between two regions, therefore the better
the prediction compared to the ground truth bounding box.

■ In practice, we also set a threshold t to IoU such that if IoU < t, we say that the network
didn’t detect anything in that region (even if the class is correct), so it failed detection.

IoU = 0.95 IoU = 0.65 IoU = 0.25 IoU = 0

Non-maximum Suppression

■ After we finish RCNN’s inference,
we may end up with many similar
predictions on top of each other.

■ Here, we use Non-Maximum
Suppression (NMS) to solve this.

■ In NMS, we try to suppress (i.e.,
delete) all predictions around an
object that are not the maximum.

■ PyTorch, we can use NMS via:

NMS

from torchvision.ops import nms
ixs = nms(bbs, confs, thr)

where bbs are the BBs and confs are the classification confidence of of each BB. It
also discards all overlapping BBs with IoU > thr.

Exercise (In pairs)

■ Write and algorithm (not need to code here) that computes the IoU of two boxes using
the (Cx, Cy, H, W) notation. Then write another algorithm for boxes that use the
(xmin, xmax, ymin, ymax) notation.

